Two New Epoxyserratanes from the Cuticle of Picea jezoensis

Reiko Tanaka, Kohji Ohmori, Katsuhiko Minoura, and Shunyo Matsunaga*
Osaka University of Pharmaceutical Sciences, 2-10-65-Kawai, Matsubara, Osaka 580, J apan
Received J une 23, 1995°
Two new saturated serratane triterpenes were isolated, together with the known compounds 21β-methoxyserrat-14-en-3-one (1) and 3 β-methoxyserrat-14-en-21-one (2), from the cuticle of Picea jezoensis Carr. jezoensis. Their structures were established as $14 \beta, 15 \beta$-epoxy- 3β -methoxyserratan-21-one (3) and 14 1415β-epoxy- 3β-methoxyserratan-21 β-ol (4) on the basis of chemical and spectral evidence.

Recently, we reported that the cuticle of Picea jezoensis (Sieb et Zucc.) Carr. jezoensis (Mayr.) (Pinaceae) contained 21 α-hydroxy- 3β-methoxyserrat-14-en-30-al and six known serratene triterpenes. ${ }^{1}$ Further investigation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the cuticle led to the isolation of two novel exoxyserratanes, $\mathbf{3}$ and $\mathbf{4}$, together with two known serratanes, $\mathbf{1}$ and 2. Herein we describe the structure elucidation of compounds $\mathbf{3}$ and 4.

Results and Discussion

One of the two known compounds (1) was identified as 21β-methoxyserrat-14-en-3-one by direct comparison with an authentic sample isolated from the stem bark of Picea jezoensis Carr. hondoensis. ${ }^{2}$ The other compound was confirmed to be 3β-methoxyserrat-14-en-21one (2), ${ }^{3,4}$ as its physical and spectral data were in good agreement with those al ready published, except for the ${ }^{13}$ C-NMR spectrum, which has not been reported previously in the literature. Unambiguous assignments for the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ signals of $\mathbf{2}$ are shown in Tables 1 and 2.

Compound $\mathbf{3}$ exhibited positive purple color on the Liebermann-Burchard test, and the molecular formula was assigned as $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{3}$ from HREIMS. The IR spectrum showed an absorption band characteristic of a six-membered ring ketone at v max $1710 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra (Tables 1 and 2), compound $\mathbf{3}$ revealed signals for seven quaternary methyl groups, one methylene group vicinal to a ketone [$\delta_{H} 2.22$ and 2.57 (each $1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14.2,4.5 \mathrm{~Hz}$)], an equatorial secondary methoxy group [$\delta_{\mathrm{H}} 3.36(3 \mathrm{H}, \mathrm{s})$ and $2.63(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=12.2,4.4 \mathrm{~Hz}, \mathrm{H}-3 \alpha) ; \delta_{c} 57.5(\mathrm{q})$ and 88.5 (d)], an oxygenated methine group [$\delta_{\mathrm{H}} 2.89(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}$);

[^0]Table 1. ${ }^{1} \mathrm{H}-\mathrm{NM}$ R Spectral Data of Compounds 2-4 and 4a in $\mathrm{CDCl}_{3}{ }^{\mathrm{a}}$

proton	compound			
	2	3	4	4a
H-1	0.88, 1.83m	1.40, 1.94m	1.39, 1.84m	
H-2	1.46, 1.77m	1.49, 1.88m	1.44, 1.78m	
H-3 α	$\begin{aligned} & 2.63 \mathrm{dd} \\ & (12.2,4.4) \end{aligned}$	$\begin{aligned} & \text { 2.63dd } \\ & (12.2,4.4) \end{aligned}$	$\begin{aligned} & 2.62 \mathrm{dd} \\ & (12.2,4.4) \end{aligned}$	$\begin{aligned} & 2.62 \mathrm{dd} \\ & (12.2,4.4) \end{aligned}$
H-5	0.75m	0.74 m	0.72 m	
H-6	1.46 m	1.49m	1.46 m	
H-7	1.11, 1.36m	1.14, 1.40m	1.15, 1.39m	
H-9	1.00m	0.74m	0.69m	
H-11	1.09, 1.75m	1.30, 2.01 m	1.58, 1.97m	
H-12	1.19, 1.99m	1.08, 1.91m	1.08, 1.91m	
H-13	1.84 m	1.50m	1.51 m	1.48m
H-15	5.38br s	2.89t (2.8)	2.81t (2.8)	2.83t (2.8)
H-16 α	1.68m	2.00m	2.04 m	
H-16 β	1.05 m	1.87m	1.91 m	
H-17	1.68 brs	$\begin{aligned} & 1.56 \mathrm{dd} \\ & (13.0,4.4) \end{aligned}$	$\begin{aligned} & 1.45 \mathrm{dd} \\ & (13.0,4.4) \end{aligned}$	$\begin{aligned} & 1.50 \mathrm{dd} \\ & (13.0,4.4) \end{aligned}$
H-19	1.35, 2.12 m	1.40, 2.15 m	1.39, 1.96m	
H-20 β	$\begin{aligned} & 2.26 \mathrm{dt} \\ & (14.2,5.3) \end{aligned}$	$\begin{aligned} & 2.22 \mathrm{dt} \\ & (14.2,4.5) \end{aligned}$	1.89 m	
H-20 α	$\begin{aligned} & 2.75 \mathrm{dt} \\ & (14.2,5.3) \end{aligned}$	$\begin{aligned} & 2.57 \mathrm{dt} \\ & (14.2,4.5) \end{aligned}$	2.02m	
H-21 α			3.40t (2.6)	4.63t (2.6)
H-23	0.96	0.95	0.95	0.94
H-24	0.75	0.75	0.74	0.74
H-25	0.80	0.83	0.82	0.82
H-26	0.83	1.08	1.08	1.09
H-27 α		0.87d (14.2)	0.86d (14.2)	0.84d (14.2)
H-27 β		1.96d (14.2)	1.93d (14.2)	1.92d (14.2)
H-28	0.92	0.95	0.74	0.75
H-29	1.04	1.04	0.90	0.94
H-30	1.09	1.09	0.94	0.84
OMe	3.35	3.36	3.36	3.35
OCOMe				2.04

a Values were recorded at $300 \mathrm{MHz}, \delta$ in ppm, J (in parentheses) in Hz; assignments from 2D COSY data.
$\delta_{c} 59.6$ (d)], an oxygenated sp^{3} quaternary carbon [$\delta \mathrm{c}$ 60.9 (s)], and a keto group [$\delta \mathrm{c} 216.3$ (s)]. Together with the DEPT data, these results indicated compound $\mathbf{3}$ to be a saturated methoxypentacyclic triterpene ketone bearing an oxide ring.

In addition to the absence of one methyl group and the presence of one more methylene group in comparison with those of the usual pentacyclic triterpene skeletons, the presence of a $>\mathrm{CHOC}$ <grouping as the third oxygen function suggests that compound $\mathbf{3}$ is a new methoxyserratanone bearing an epoxy ring. It is conceivable that $\mathbf{3}$ is derived from an analogous serratene constituent in this plant organ by an enzymatic epoxidation of the double bond. This presumption was verified by analyzing extensive 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, 2D ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY, and HREIMS data. In the 2D long-

Table 2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectral Data of Compounds $\mathbf{2 - 4}$ and $\mathbf{4 a}$ in $\mathrm{CDCl}_{3}{ }^{\text {a }}$

carbon	compound			
	2	3	4	4a
C-1	38.5t	38.6t	38.5t	38.6t
C-2	22.3t	22.3 t	22.3t	22.3 t
C-3	88.4d	88.5d	88.5d	88.5d
C-4	38.9s	38.9s	38.9s	38.9s
C-5	56.3d	56.2d	56.2d	56.2d
C-6	18.8t	18.4t	18.4t	18.4t
C-7	45.2t	44.8 t	44.8t	44.8 t
C-8	37.1s	39.0s	39.1s	39.1s
C-9	62.8d	63.1d	63.4d	63.3d
C-10	38.2s	38.1s	38.1s	38.1s
C-11	25.5t	25.5t	25.4t	25.4t
C-12	27.2t	27.5t	27.1t	27.1t
C-13	56.5t	55.7t	56.7t	56.6t
C-14	138.3s	60.9s	61.3s	61.3 s
C-15	121.9d	59.6d	59.3d	59.3d
C-16	24.5t	23.5t	22.8 t	22.8 t
C-17	51.2d	45.2d	38.0d	38.9d
C-18	36.2s	35.5s	35.2s	35.2s
C-19	38.4t	37.9t	31.8t	32.5t
C-20	34.8t	34.6t	25.1t	22.6 t
C-21	217.0s	216.3s	75.7d	77.7d
C-22	47.7s	46.8s	37.1s	36.2s
C-23	28.1q	28.1q	28.1q	28.1q
C-24	16.2q	16.1q	16.1q	16.1q
C-25	15.7q	16.2q	16.3q	16.2q
C-26	19.8q	20.3q	20.4q	20.4q
C-27	55.9t	55.2t	55.4t	55.3t
C-28	$13.0 q$	14.7 q	14.8q	14.7q
C-29	21.6 q	$22.8 q$	22.9 q	27.4q
C-30	24.5q	24.8q	27.8q	$22.6 q$
OMe	57.5q	57.5q	57.5q	57.5q
OCOMe				21.3 q
OCOMe				170.9s

a Values were recorded at $74.5 \mathrm{MHz}, \delta$ in ppm; assignments are from DEPT, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY, and long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY experiments.

Figure 1. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY long-range couplings and key NOE differences observed in 3. -: 2D long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY (HETCOR) data. ----- : NOE difference data.
range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY (HETCOR) experiment, signals of $\mathrm{H}-13, \mathrm{H}-15, \mathrm{H}-17$ and all the methyl protons of 3 provided ${ }^{2} \mathrm{~J}$ and ${ }^{3} \mathrm{~J}$ cross correlations with those of the related carbons (Figure 1).

Detailed HREIMS analysis brought precious information on the plane structure of 3 (Scheme 1). Fragment ion peaks corresponding to $[\mathrm{M}-\mathrm{MeOH}]^{+}$and $[\mathrm{M}$ $-\mathrm{Me}-\mathrm{MeOH}]^{+}$were observed at $\mathrm{m} / \mathrm{z} 438.3498$ (ion a) and 423.3263, respectively, in the high mass number region. Peaks that appeared at $\mathrm{m} / \mathrm{z} 287.2364$ (ion b) and 275.2377 (ion c) were assigned to the moiety of A, B, and C rings, with an oxygen atom generated from ion a by the fission of the D ring involving an epoxy group. A peak observed at m/z 257.2272 was attributed to ion d caused by either the elimination of one formaldehyde molecule from ion \mathbf{b} or the loss of one water molecule from ion c. Cleavage of the C ring
provided four predominant peaks from the left portion of 3 at m/z 248.2133 (base peak, ion e), 221.1902 (ion h), 216.1875 [e -MeOH$]^{+}$(ion i), 203.1794 (ion \mathbf{k}), and 189.1646 [h -MeOH$]^{+}$(ion \mathbf{n}), along with three fragment ion peaks attributable to the right portion of 3, including two oxygen atoms, at m/z 235.1681 (ion f), 222.1620 (ion g), and 207.1738 (ion j). A peak at m/z 201.1640 was assigned to ion 1, caused by the further loss of one methyl group from ion \mathbf{i}.

As a whole, the above fragmentations were similar to those of the known 3β-methoxyserratenes. ${ }^{2,5}$ The appearance of peaks for ions $\mathbf{b}-\mathbf{d}, \mathbf{f}, \mathbf{g}$, and \mathbf{j} indicated that the epoxy ring was located between the 14 and 15 positions of 3 . Along with the signal pattern of the proton geminal to the methoxy group, these data indicated 3 to be $14 \xi, 15 \xi$-epoxy- 3β-methoxyserratan-21-one.

The stereochemistry was determined by analyzing the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signal of $\mathrm{H}-15$ and the NOE data, together with the use of Dreiding stereomodels (Figure 2). In the model of 3 having a $14 \beta, 15 \beta$-epoxy group and a cisfused crown/half-chair conformation of C/D rings (3a), the dihedral angles between $\mathrm{H}-15 \alpha$ and $\mathrm{H}-16 \alpha$ and between $\mathrm{H}-15 \alpha$ and $\mathrm{H}-16 \beta$ become almost 60° each. In this form, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signal of $\mathrm{H}-15 \alpha$ would split into a triplet due to the presence of vicinal 16-methylene protons. Furthermore, the E ring in 3a sustains some torsion by the strained D ring, and the dihedral angles between $\mathrm{H}-19 \alpha$ and $\mathrm{H}-20 \alpha$, between $\mathrm{H}-19 \alpha$ and $\mathrm{H}-20 \beta$, and between $\mathrm{H}-19 \beta$ and $\mathrm{H}-20 \alpha$ adopt angles near 30°, 90°, and 30°, respectively. The patterns of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals for $\mathrm{H}-15$ and $\mathrm{H}-20$ observed at $\delta 2.89(\mathrm{t}, \mathrm{J}=2.8$ $\mathrm{Hz})$ and $\delta 2.22(\mathrm{dt}, \mathrm{J}=14.2,4.5 \mathrm{~Hz}, \mathrm{H}-20 \alpha$) and 2.57 (dt, J = 14.2, $4.5 \mathrm{~Hz}, \mathrm{H}-20 \beta$), respectively, supported structure 3a. In the model of the $14 \alpha, 15 \alpha$-epoxy isomer of 3 involving a trans-fused chair/half-chair conformation of the C / D rings (3b), however, the dihedral angles between $\mathrm{H}-15 \beta$ and $\mathrm{H}-16 \alpha$ and between $\mathrm{H}-15 \beta$ and $\mathrm{H}-16 \beta$ adopt angles of ca. 100° and 20°, respectively, and the proton signal of $\mathrm{H}-15 \beta$ would split into a doublet of doublets inconsistent with values given in the Experimental Section.

In the NOE difference spectrum of $\mathbf{3}$ (Figure 1), selective irradiation of the $\mathrm{H}-15$ signal exhibited 3.1%, 4.2%, and 3.7% NOE enhancements for the signals of $\mathrm{H}-16 \alpha, \mathrm{H}-16 \beta$, and $\mathrm{H}-27 \beta$, respectively, although no NOE has been observed for that of $\mathrm{H}-27 \alpha$. All these observations confirm that 3 is $14 \beta, 15 \beta$-epoxy- 3β-meth-oxyserratan-21-one. Further confirmation of the above structure was achieved by synthesis. Oxidation of 3β -methoxyserrat-14-en- 21β-ol (5), the most abundant triterpene constituent in this plant source, ${ }^{1}$ with CrO_{3} in pyridine and subsequent oxidation of the resulting ketone (2) with m-chloroperbenzoic acid (m-CPBA), furnished the epoxy-ketone identical in all respects with compound 3.

Compound 4 showed positive purple color with the Liebermann-Burchard reagent. The molecular formula was assigned as $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{3}$ by HREIMS. The IR, ${ }^{1} \mathrm{H}-$ NMR, and ${ }^{13} \mathrm{C}-$ NMR spectra (Tables 1 and 2) signals were assigned to seven quaternary methyl groups, to an equatorially oriented secondary methoxy group attributable to the usual $\mathrm{C}-3$ position in the known triterpene skeleton [$\delta_{\mathrm{H}} 2.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.2,4.4 \mathrm{~Hz}$, $\mathrm{H}-3 \alpha$) and $3.36(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 57.5(\mathrm{q})$ and $88.5(\mathrm{~d})$], to a

Scheme 1. Mass spectral fragmentation of compounds 3, 4, and 4a.

$$
\begin{array}{lll}
3 \mathrm{~m} / \mathrm{z} & 235.1681\left|\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2}\right|^{+} & 3 \mathrm{~m} / \mathrm{z} \\
222.1620\left|\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}\right|^{+} \\
4 \mathrm{~m} / \mathrm{z} & 237 & 4 \mathrm{~m} / \mathrm{z} \\
224.1777\left|\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}\right|^{+} \\
4 \mathrm{n} \mathrm{~m} / \mathrm{z} & 279 & 4 \mathrm{n} \mathrm{~m} / \mathrm{z} \\
266
\end{array}
$$

$3 \mathrm{~m} / 2207.1738\left|\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}\right|^{+}$
$4 \mathrm{~m} / \mathrm{z} 209.1534\left|\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{2}\right|^{+}$ $4 \mathrm{~m} / \mathrm{z} 191\left|\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}\right|^{+}$ 4a $m / z 191$
ion b
$\begin{array}{lc}3 & m / z \\ 4 & 287.236+\left|\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{2}\right|^{+} \\ 4 & -\end{array}$
4n m/z 287

$$
4 m / z 203
$$

a m'z 203

ion \mathbf{c}
$3 \mathrm{~m} / \mathrm{z} 275.2377 \mathrm{IC}_{19} \mathrm{H}_{31} \mathrm{Ol}^{+}$
-
4

ion d
$3 \mathrm{~m} / \mathrm{z} 2.57 .2272 /\left.\mathrm{C}_{19} \mathrm{H}_{29}\right|^{+}$
$4 \mathrm{~m} / \mathrm{z} 257$
4a m/z 257

ion e
$3 \mathrm{~m} / \mathrm{z} 248.2133\left|\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}\right|^{+}$
$4 m / z 248$
4 n m/z 248

ion \mathbf{i}
ion 1

${ }^{11^{+}} \quad 3 \quad 3 \mathrm{~m} / \mathrm{z} 201.16+10$			
4 - 4 miz 201			
4 a			

secondary hydroxyl group [$v \max 3450 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}} 3.40$ ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, \mathrm{H}-21 \alpha$); $\delta_{\mathrm{c}} 75.7$ (d)], to an oxygenated methine proton $\left[\delta_{H} 2.81(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{H}-15 \alpha)\right.$; δ_{C} 59.3 (d)], and to an oxygenated sp^{3} quaternary carbon [$\delta \mathrm{c} 61.3$ (s)]. The DEPT spectrum showed that 4 had the same carbon composition as 3, except for the presence of a secondary hydroxyl group and the absence of a keto group. Acetylation of 4 afforded the corre sponding acetate (4a) in which the carbinolic methine proton signal was shifted to $\delta 4.63(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}$, $\mathrm{H}-21 \alpha$), indicating the secondary hydroxyl group in 4
to have an axial orientation. In the EIMS (Scheme 1), compound 4 showed fragment ion peaks at $\mathrm{m} / \mathrm{z} 454$ [M $\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 440[\mathrm{M}-\mathrm{MeOH}]^{+}$(ion a), 425 [ion $\mathbf{a}-\mathrm{Me]}^{+}$ and 422 [ion $\left.\mathbf{a}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$in the high mass number region, as well as 4 at $\mathrm{m} / \mathrm{z} 482$ [$\mathrm{M}-\mathrm{MeOH}]^{+}$(ion a), 454 [M $-\mathrm{HOAc}^{+}, 440$ [ion a $-\mathrm{CH}_{2} \mathrm{CO}^{+}, 425$ [440- Me] ${ }^{+}$, and $422[\mathrm{M}-\mathrm{MeOH}-\mathrm{HOAc}]^{+}$. Except for ions \mathbf{c} and \mathbf{i}, peaks corresponding to fragment ions $\mathbf{b}-\mathbf{I}$ and \mathbf{n} were observed in the spectra of $\mathbf{4}$ and $\mathbf{4 a}$, together with an additional peak attributable to [ion $\mathbf{j}-\mathrm{H}_{2} \mathrm{O}{ }^{+}$in $\mathbf{4}$ and [ion $\mathbf{j}-\mathrm{HOAc}]^{+}$in $4 \mathbf{a}$ at $\mathrm{m} / \mathrm{z} 191$ (ion \mathbf{m}). Close

$\mathbf{3 a}$

3b

Figure 2. Stereoptic views of compounds $\mathbf{3 a}$ and $\mathbf{3 b}$ by computer modeling.
similarity of the above data to those of $\mathbf{3}$ indicated that 4 is probably the 21β-hydroxy derivative of 3 . Oxidation of 4 with CrO_{3} in pyridine yielded the keto-derivative identical in all respects with 3. Thus, the structure of 4 was established as $14 \beta, 15 \beta$-epoxy- 3β-methoxyserra-tan-21 β-ol.

Compounds $\mathbf{3}$ and $\mathbf{4}$ have not been described previously in the literature, although six 14β-hydroxyserratanes, wightianol, ${ }^{6}$ tohogenol and tohogeninol, ${ }^{7}$ phlegmanol $F,{ }^{8}$ inundoside $C,{ }^{9}$ and phlegmanol $D,{ }^{10}$ have been isolated from several Lycopodium species. Three $14 \beta, 26$-epoxyserratane derivatives have also been isolated from the whole plants of Primula rosea (Primulaceae). ${ }^{11}$

Experimental Section

General Experimental Procedures. Melting points were determined on a Y anagimoto micro-melting-point apparatus and were uncorrected. Optical rotations were measured in CHCl_{3} using a J ASCO DIP 140 digital polarimeter. IR spectra were recorded as KBr disks using a Perkin-EImer 1720X FTIR spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were obtained on a Varian XL-300 spectrometer with standard pulse sequences operating at 300 MHz and 74.5 MHz , respectively. All NMR spectra were recorded in CDCl_{3}, chemical shift values are reported with ppm relative to TMS, and coupling constants are in Hz . Carbon multiplicities were determined by DEPTGL experiments. All ${ }^{13} \mathrm{C}-\mathrm{NMR}$ assignments were based on DEPTGL, ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY, long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY, and NOE difference experiments. EIMS and HREIMS were run on a Hitachi M-80 mass spectrometer (70 eV). Si gel 60 and alumina 90 (each 70-230 mesh, Merck) were used for column chromatography, as well as Si gel HF_{254} and PF_{254} (Merck) for TLC.

Isolation of Compounds. Detailed fractionation of residues A-E separated from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract (365.1 g) of the dried cuticle of Picea jezoensis (Sieb. et Zucc) Carr. jezoensis (Mayr.) (6.0 kg) by Si gel column chromatography has been reported previously. ${ }^{1}$ In the course of the above investigation, we left detailed examination of the following two eluates unfinished, that is, (a) a gum (10.6 g) collected from the early CHCl_{3} fractions in the rechromatography of residue \mathbf{A} and (b) residue $\mathbf{F}(43.6 \mathrm{~g})$, obtained from the fractions eluted between residues \mathbf{B} and \mathbf{C} on the preliminary Si gel column chromatography of the extract. Repeated column chromatography of the gum on alumina (500 g)
afforded 21β-methoxyserrat-14-en-3-one (1) [278 mg; mp $226.5-228{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right) ;[\alpha]^{23} \mathrm{D}-1^{\circ}$ (c 0.44) $\left[\mathrm{lit} .{ }^{2}\right.$ $\left.\mathrm{mp} 227-229.5^{\circ} \mathrm{C},[\alpha]^{23} \mathrm{D}-1^{\circ}(\mathrm{c} 0.27)\right]$, identical in all respects (mmp, [α]D, co-TLC, IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and EIMS) with an authentic sample ${ }^{1}$ from the fractions $12-$ 16 (each fraction: 100 mL) eluted with n-hexane- $\mathrm{C}_{6} \mathrm{H}_{6}$ (3:1). Successive col umn chromatography with the same solvent afforded the known 3β-methoxyserrat-14-en-21one (2) [146 mg; mp 268.5-270 ${ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right) ;[\alpha]^{23} \mathrm{D}$ -29° (c 0.33) [lit. $\left.\left.{ }^{4} \mathrm{mp} 272.5-273{ }^{\circ} \mathrm{C},[\alpha]^{23} \mathrm{D}-29^{\circ}\right]\right]$ from fractions 21-36 (each fraction: 100 mL): IR $v \mathrm{max} \mathrm{cm}^{-1}$ $1709,1635,1410,860$, and 846 ; ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ see Tables 1 and 2; HREIMS m/z [M] $454.3815\left(\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{2}\right)$. Physical and IR, ${ }^{1} \mathrm{H}-$ NMR, and EIMS data of 2 were in good agreement with those al ready published. Repeated column chromatography of residue \mathbf{F} on Si gel (1 kg) afforded a crystalline solid (126 mg) from the fractions eluted with CHCl_{3} (fractions $39-42,100-\mathrm{mL}$ fractions), which was purified by preparative TLC (plate: $0.5-\mathrm{mm}$ thick, $20 \times 20 \mathrm{~cm}$, solvent: $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 30: 1$) to give compound $\mathbf{3}$ (107 mg). Continuous elution of the column with $\mathrm{CHCl}_{3}-\mathrm{EtOAc}(20: 1)$ furnished a crystalline solid, 32 mg , from fractions 63-67, which was purified by preparative TLC (plate: $0.5-\mathrm{mm}$ thick, $20 \times 20 \mathrm{~cm}$, solvent: $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 20: 1$) to give compound 4 (21 mg).

14 β,15 β-E poxy-3 β-Methoxyserratan-21-one (3): prisms; mp 271.5-274 ${ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right) ;[\alpha]^{23 \mathrm{D}}-27^{\circ}$ (c 0.28); HREIMS m/z [M] $470.3751\left(\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}\right.$ requires 470.3756); IR $v \mathrm{max} \mathrm{cm}^{-1}$ 2970, 2960, 2853, 1710 (sixmembered ring $\mathrm{C}=0$), 1458, 1388, and 1365 (gem dimethyl), 1103, 1048, 1008, and 995; ${ }^{1 \mathrm{H}}$ and ${ }^{13} \mathrm{C}$ NMR see Tables 1 and 2; EIMS (70 eV) m/z [M] 470 (82), [M $-\mathrm{Me}]^{+} 455$ (18), [ion a] 438 (6), 423 (5), 381 (3), [ion b] 287 (24), [ion c] 275 (6), [ion d] 257 (13), [ion e] 248 (100), [ion f] 235 (66), 233 (29), [ion g] 222 (60), [ion h] 221 (25), [ion i] 216 (38), [ion j] 207 (36), [ion k] 203 (33), [ion I] 201 (57), and [ion n] 189 (47).

Synthesis of Compound 3 from 5. (a) A solution of $\mathrm{CrO}_{3}(50 \mathrm{mg})$ in pyridine (2 mL) was added to a solution of 3β-methoxyserrat-14-en- 21β-ol (5) (50 mg) in pyridine (2 mL) with stirring at $5^{\circ} \mathrm{C}$, and the mixture was kept at room temperature for 5 h . Workup as usual yielded a crude crystalline mass (55 mg), which was purified by preparativeTLC ($0.5-\mathrm{mm}$ thick, $20 \times 20 \mathrm{~cm}$; CHCl_{3}) to give 3β-methoxyserrat-14-en-21-one (2) [45 $\mathrm{mg} ; \mathrm{mp} 272-274{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right) ;[\alpha]^{23} \mathrm{D}-29^{\circ}$ (c 0.25); EIMS m/z [M]+ 454], identical in all respects (mmp, [α]$\mathrm{D}, \mathrm{CO}-\mathrm{TLC}, I \mathrm{I},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and EIMS) with an
authentic sample isolated above. (b) A solution of $0.00028 \mathrm{M} \mathrm{m-CPBA}$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was gradually added to a solution of synthetic compound $2(40 \mathrm{mg})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ with stirring at room temperature. After being allowed to stand for 4 h , the reaction mixture was washed with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. Evaporation of the solvent in vacuo afforded a residue that was purified by preparative TLC ($0.5-\mathrm{mm}$ thick, $20 \times 20 \mathrm{~cm}$; $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 30: 1$) to give $14 \beta, 15 \beta$-epoxy-3 β-methoxy-serratan-21-one: 38 mg ; mp $272-274{ }^{\circ} \mathrm{C}$ ($\mathrm{MeOH} /$ CHCl_{3}); $[\alpha]^{23} \mathrm{D}-27^{\circ}$ (c 0.33). The resulting product was identified by direct comparison (mmp, [α]D, co-TLC, IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and EIMS) with compound 3.

14 $\beta, 15 \beta$-E poxy-3 β-methoxyserratan-21 β-ol (4): prisms; mp $251-253^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right) ;[\alpha]^{23} \mathrm{D}-1^{\circ}$ (c 0.10); HREIMS m/z [M] $+472.3899\left(\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{3}\right.$ requires 472.3912); IR v max cm $^{-1} 3450$ (OH), 2961, 2938, 2850, 1458, 1387, and 1363 (gem-dimethyl), 1106, 1034, 995, 892, and 823 ; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR seeTables 1 and 2; EIMS (70 eV) m/z [M] 472 (13), [M - Me] 457 (3), [M $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+} 454$ (4), [ion a] 440 (1), [ion a - Me] 425 (8), [ion a - $\mathrm{H}_{2} \mathrm{O}$] 422 (4), 393 (2) [ion b] 287 (1), [ion d] 257 (100), [ion e] 248 (3), [ion f] 237 (10), [ion g] 224 (39), [ion h] 221 (13), [ion j] 209 (43), [ion k] 203 (10), [ion I] 201 (9), [ion j - H2O, ion m] 191 (11), [ion n] 189 (23), 187 (17), and 136 (100).

Acetylation of Compound 4. Compound 4 (21 mg) was acetylated as usual ($\mathrm{Ac}_{2} \mathrm{O} /$ pryidine, each 1 mL) to give the corresponding acetate 4a: $20 \mathrm{mg} ; \mathrm{mp} 255-258$ ${ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$; IR v max $\mathrm{cm}^{-1} 2960,2938,2850$, 1737, 1460, 1388, 1366, 1245, 1186, 1107, 1034, 996, 889, and 831 ; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR seeTables 1 and 2; EIMS (70 eV) m/z [M] ${ }^{+} 514$ (46), 499 (18), [ion a] 482 (5), [M - HOAc] 454 (19), [ion a $\left.-\mathrm{CH}_{2} \mathrm{CO}\right] 440$ (10), 425 (26), [ion a - HOAc] 422 (25), 393 (13), [ion b] 287 (7), [ion f] 279 (22), [ion g] 266 (86), [ion d] 257 (20), [ion j] 251 (67), [ion e] 248 (19), [ion h] 221 (18), [ion k] 203 (15),
[ion I] 201 (19), [ion m] 191 (24), [ion n] 189 (29), 187 (30), and 136 (100).

Oxidation of Compound 4 with CrO_{3}. A solution of CrO_{3} (18 mg) in pyridine (1.5 mL) was gradually added into a solution of compound $4(18 \mathrm{mg})$ in pyridine (2 mL) with stirring at $5^{\circ} \mathrm{C}$, and then the mixture was left at room temperature for 5 h . Workup as described above furnished a crystalline solid, 17 mg , which was purified by preparativeTLC ($0.5-\mathrm{mm}$ thick, $20 \times 20 \mathrm{~cm}$, $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 30: 1$). Recrystallization from $\mathrm{MeOH}-$ CHCl_{3} afforded a keto derivative [15 mg; mp 271-273 ${ }^{\circ} \mathrm{C} ;[\alpha]^{23} \mathrm{D}-27^{\circ}$ (c 0.23)], which was identified by direct comparison (mmp, $[\alpha] \mathrm{D}, \mathrm{co}-\mathrm{TLC}, \mathrm{IR},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and EIMS) with an authentic sample of 3.

Acknowledgment. The authors are indebted to Mrs. M. Fujitake of this university for MS measurements.

References and Notes

(1) Tanaka, R.; Senba, H.; Minematsu, T.; Muraoka, O.; Matsunaga, S. Phytochemistry 1995, 38, 1467-1471.
(2) Tanaka, R.; Mun, C.; Usami, Y.; Matsunaga, S. Phytochemistry 1994, 35, 1517-1522
(3) Norin, T.; Winell, B. Acta Chem. Scand. 1972, 26, 2297-2304.
(4) Conner, A. H.; Nagasampagi, B. A.; Rowe, J . W. Phytochemistry 1975, 19, 1121-1131.
(5) Kutney, J. P.; Eigenhorn, G.; Rogers, I. H. Tetrahedron 1969, 25, 3753-3766.
(6) Tsuda, Y.; Tabata, Y.; Ichinohe, Y. Chem. Pharm. Bull. 1980, 28, 3275-3282.
(7) Sano, T.; Tsuda, Y. Tetrahedron 1970, 26, 2981-2986.
(8) Inubushi, Y.; Hibino, T.; Hasegawa, T.; Somanathan, R. Chem. Pharm. Bull. 1971, 19, 2640-2642.
(9) Inubushi, Y.; Hibino, T.; Harayama, T.; Hasegawa, T.; Somanathan, R. J. Chem. Soc., C 1971, 3109-3114.
(10) Tsuda, Y.; K aneda, M.; Namori, Y.; Shimizu, Y. Chem. Pharm. Bull. 1981, 29, 2123-2134.
(11) Bhutani, K. K.; K apoor, R.; Atal, C. K. Phytochemistry 1984, 23, 403-406.

NP9600659

[^0]: * Author to whom correspondence should be addressed. New address of this University (after April 1, 1996): 4-20-1 Nasahara, Takatsuki 569-11, Osaka, J apan. Tel: 0726-90-1038, 1039. Fax: 0726-90-1005.
 ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, February 15, 1996.

